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The effects of electron interaction on the magnetoconductance of graphene nanoribbons �GNRs� are studied
within the Hartree approximation. We find that a perpendicular magnetic field leads to a suppression instead of
an expected improvement of the quantization. This suppression is traced back to interaction-induced modifi-
cations of the band structure leading to the formation of compressible strips in the middle of GNRs. It is also
shown that the hard-wall confinement combined with electron interaction generates overlaps between forward
and backward propagating states, which may significantly enhance backscattering in realistic GNRs. The
relation to available experiments is discussed.

DOI: 10.1103/PhysRevB.82.121410 PACS number�s�: 73.22.Pr, 73.43.�f, 73.63.Nm, 72.80.Vp

Conductance quantization in quantum point contacts
�QPCs� and quantum wires represents a hallmark of mesos-
copic physics.1,2 At zero magnetic field this effect can be
understood within a noninteracting electron picture as quan-
tization of the transverse electron motion where, according to
the Landauer-Buttiker formalism, each propagating mode
contributes with the conductance quantum G0=2e2 /h to the
total conductance.1,2 In a perpendicular magnetic field B the
propagating states acquire qualitatively new features gradu-
ally transforming into edge states as B is increased.2–5 Since
the left- and right-propagating edge states get localized in
transverse direction at opposite wire edges in sufficiently
strong magnetic fields, the coupling between them can be
exponentially small. This, in turn, leads to a strongly sup-
pressed backscattering and hence to a drastic improvement of
the conductance quantization.2–6 Taking electron interaction
and screening in high magnetic fields into account leads to
new features such as formation of compressible and incom-
pressible strips,7 which are essential for an interpretation of
various magnetotransport phenomena in conventional QPCs
and quantum wires defined in two-dimensional electron
gases �2DEGs�.7,8

The isolation of graphene9 has immediately inspired the
search for conductance quantization in graphene nanoribbons
�GNRs�. However, in all experiments reported so far conduc-
tance quantization at B=0 is absent10 or strongly
suppressed,11 which by now is well understood and attributed
to the effects of impurity scattering and/or edge disorder.12 In
analogy with conventional QPC structures one would thus
anticipate a drastic improvement of the conductance quanti-
zation in GNRs in the edge-state regime due to the expected
suppression of backscattering.4 Surprisingly enough, the
magnetoconductance measurements on GNRs reported so far
show no evidence of the expected improvement of the con-
ductance quantization.13–15 Even relatively large graphene
strips ��1 �m� �Refs. 16 and 17� do not exhibit quantiza-
tion plateaus at high magnetic fields of high quality as rou-
tinely seen in corresponding conventional heterostructures.6

In the present Rapid Communication, we study the mag-
netoconductance of GNRs taking electron interaction on the

Hartree level into account. Contrary to expectations based on
the conventional edge-state picture of noninteracting
electrons4 we find that application of a magnetic field leads
to a suppression instead of expected improvement of the con-
ductance quantization. This behavior is related to a drastic
modification of the GNR band structure by electron interac-
tion leading, in particular, to the formation of compressible
strips in the middle of the ribbon. These features are generic
in GNRs but in contrast to most of the distinct properties of
graphene18 they are not caused by the Dirac-type energy dis-
persion but rather by the hard-wall confinement.

We consider a GNR attached to semi-infinite leads acting
as electron reservoirs and subjected to a perpendicular mag-
netic field B, see inset of Fig. 1. The ribbon of width w
=50 nm resides on top of a SiO2 insulating substrate ��r
=3.9� of thickness d=300 nm, below which a metallic gate
is located. The system is described by the standard p-orbital
tight-binding Hamiltonian18,19

H = �
r

VH�r�ar
+ar − �

r,�
tr,r+�ar

+ar+�, �1�

where the summation runs over all sites of the graphene lat-
tice, � includes the nearest neighbors only, tr,r+�

= t0 exp�i2��r,r+� /�0� with t0=2.77 eV, �0=h /e being the
magnetic-flux quantum, and �r,r+�=�r

r+�A ·dl with A being
the vector potential. We use the Landau gauge, A= �−By ,0�.
The interaction among the extra charges of the density n�r�
is described within Hartree approximation,

VH�r� =
e2

4��0�r
�

r��r

n�r��� 1

�r − r��
−

1
��r − r��2 + 4d2� , �2�

where the first term describes electron interaction within the
ribbon while the second term takes the presence of the me-
tallic gate on the basis of the image charge method into ac-
count. The band structure, the potential profile, the charge-
density distribution are calculated self-consistently using the
Green’s-function technique �see Refs. 20 and 21 for details�.
The magnetoconductance of the nanoribbon in the linear-
response regime is given by Landauer formula
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G�EF,B� =
2e2

h
	 T�E,B�
−

� fFD�E − EF�
�E

�dE , �3�

where fFD�E−EF� is the Fermi-Dirac distribution function
and EF denotes the Fermi energy. For an ideal system �with-
out scattering�, the total transmission coefficient T�E ,B� is
equal to the number of propagating states, T�E ,B�=Nprop,
such that the conductance is simply proportional to Nprop

weighted by
�fFD

�E which is different from zero in an energy
window �4�kBT.

Figure 1 shows the conductance of the ideal nanoribbon
for a representative magnetic field B=30 T as a function of
the filling factor �= n��0 /B for two representative tempera-
tures with n� being the electron-density averaged across the

ribbon. Here, � is tuned by varying the gate voltage Vg which
is applied vs the grounded nanoribbon and thus tunes the
electron density. The ratio of GNR width to magnetic length,
w / lB�11, is chosen in accordance with typical
experiments.13,14 It is important to emphasize that the ob-
tained results remain practically unchanged when the system
is scaled by, e.g., increasing w while simultaneously reduc-
ing B such that the ratio w / lB remains constant. In order to
highlight the role of electron interaction, we compare our
self-consistent calculations with a noninteracting picture.
The calculated conductance shows a striking difference be-
tween the interacting and noninteracting cases. First of all, at
a given filling factor, the conductance of the interacting sys-
tem is always larger than that one of the corresponding non-
interacting system. Second, the perfect quantization steps
calculated for the noninteracting picture are destroyed as the
interaction is turned on and the conductance develops pro-
nounced bumplike features. Note that the elevated tempera-
ture smears the conductance bumps to some extent but they
still dominate the conductance even at T=50 K. We also
note that we performed the magnetotransport calculations for
a high-k material ��r=47� and a gate close by, d=5 nm
when the electron interaction is strongly screened �not shown
here�. We find that even in this case the bumps are weakened
but still clearly dominate the conductance.

We proceed by interpreting the suppression of conduc-
tance plateaux in terms of interaction-induced modifications
of the energy dispersion. The evolution of the band structure
as a function of � in the interval covering a representative
bump, 2.9	�	5.7 �corresponding to arrows �a�–�c� in Fig.
1� is presented in Fig. 2 both for interacting and noninteract-
ing cases. The dispersion relation for noninteracting elec-
trons shows flat regions corresponding to the Landau levels
in bulk graphene18,22 and dispersiveness states close to the
GNRs boundaries representing familiar edge states.5 Note
that the position and the number of propagating states at a
given energy are determined by the intersection of the Fermi-
energy level with the corresponding subbands.

For noninteracting electrons changing the gate voltage re-
sults in a shift of the Fermi level but does not modify the
subband structure. Qualitatively new features arise when the
electron interaction is taken into account. One of the most
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FIG. 2. �Color online� Evolution of the band structure of the GNR at different filling factors corresponding to arrows �a�–�d� in Fig. 1.
Left and right parts of the panels correspond to the interacting and noninteracting case, respectively. In order to align noninteracting and
Hartree bands the one-electron dispersions have been shifted along the energy axis by the average Hartree energy. Gray fields mark the
energy window �EF−2�kbT ,EF+2�kbT�; yellow fields mark the compressible strips. The dotted lines show EF. The black full circles mark
the intersections of the Fermi level with the dispersion curves, thereby identifying the propagating states at EF. In �a� the dispersionless states
are marked according to the corresponding LLs of the bulk graphene.
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FIG. 1. �Color online� Conductance of the GNR as a function of
filling factor for interacting and noninteracting electrons at tempera-
tures T=20 K �red thick lines� and 50 K �blue thin lines� in a
magnetic field B=30 T �corresponding to lB /w�11�. The arrows
indicate the filling factors for which the corresponding band struc-
tures are shown in Fig. 2. Inset: sketch of the sample geometry. An
armchair GNR of width w=50 nm is located on top of an insulating
SiO2 layer ��r=3.9, thickness d=300 nm� and a gate electrode.
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distinct features is that the dispersionless state in the center
of the GNR �corresponding to the first Landau level �LL��
gets pinned to the Fermi energy thus forming a compressible
strip. These strips are marked in yellow in Figs. 2�b�–2�d�;
following Suzuki and Ando23 we define a compressible strip
as a region where the dispersion lies within the energy win-
dow �E−EF�
2�kBT. The compressible strips form because
in the above energy window the states are partially filled
�i.e., 0
 fFD
1� and hence the system has a metallic char-
acter. Due to the metallic behavior, the electron density can
easily be redistributed in order to effectively screen the ex-
ternal potential.7 The compressible strips can form only if the
confining potential is sufficiently smooth.7 The GNRs have a
hard-wall confinement and hence the compressible strips can
form only in the center but not for the edge states. The ex-
istence of compressible strips in graphene has been recently
demonstrated by Silvestrov et al.24

Because of the pinning of the LL to the Fermi energy,
changing of the filling factor leads to a significant distortion
of the dispersion curves. For a given B, the larger the gate
voltage �and therefore �� is, the stronger the bands are dis-
torted in comparison to the noninteracting picture �cf. �a�–�d�
in Fig. 2�. This distortion eventually leads to the bumps in
the conductance. Indeed, according to Eq. �3� the conduc-
tance is given by the number of propagating states averaged
in the energy window �E−EF�
2kBT. For noninteracting
electrons the dispersion relation is not changed as � is varied
and the number of propagating states remains always the
same, Nprop=3 �see right panels in Figs. 2�a�–2�c��. This,
according to Eq. �3�, leads to a conductance plateau G
=3G0. In contrast, for interacting electrons the dispersion
relation gets distorted and there is always an energy interval
in the window �E−EF�
2kBT, where the number of propa-
gating states exceeds that for the noninteracting case. This is

illustrated in the left panels in Figs. 2�b� and 2�c� for E
=EF, where Nprop=5. As a result, the conductance exceeds
its noninteracting value of 3G0 exhibiting the pronounced
bumps.

With further increase in �, the compressible strips pinned
to the Fermi level form not only in the center of the strip but
further away from the center �as illustrated in Fig. 2�d��.
Note that the second compressible strip in Fig. 2�d� leads to
the formation of a bump in the conductance in the region 6
	�	9.

Let us now discuss in detail a structure of propagating
states of the interacting electrons in GNRs. Figures 3�a� and
3�b� show the electron density and the confining potential for
a representative filling factor �=4.7 ��b�, arrow in Fig. 1�.
The distribution of charge density is highly nonuniform
showing charge accumulation at the boundaries.21,24 There
are two types of states, which have a different microscopic
character. The first type �1, 2, and 3 states in �a�–�c�� corre-
sponds to edge states propagating near the boundaries and
have the same structure for interacting and noninteracting
cases. The second type �states 4 and 5� corresponds to the
states which form compressible strips in the center of the
ribbon as discussed above. The most prominent feature of
these states is that their direction of propagation is opposite
to that one of the edge states residing in the same half of the
GNR. This is in contrast to the noninteracting picture, where
due to the presence of a magnetic field, forward and back-
ward propagating states are localized at different boundaries
by Lorentz forces. This unusual behavior can be interpreted
in terms of a semiclassical analog. The electrons scattered at
the boundaries are described by skipping orbits. Besides the
hard-wall potential walls provided by nanoribbon’s edges,
there are two additional walls originating from the self-
consistent potential which, together with the outer walls of
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FIG. 3. �Color online� �a� Electron concentration n�y�, �b� self-consistent potential VH across the GNR, and �c� the band structure at �
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the GNR, form triangular quantum wells at the ribbon’s
edges �Fig. 3�b��. Electrons which strike the left side of the
right-triangular quantum well propagate in the same direc-
tion as the electrons that strike the left edge of the nanorib-
bon as schematically illustrated in Fig. 3�b�.

This feature of propagating states in high magnetic field
makes GNRs much more sensitive to the effect of the disor-
der in comparison to conventional split-gate structures de-
fined in 2DEG. Indeed, for interacting electrons in GNRs the
overlap between the backward �4B, 5B� and forward �1F-3F�
propagating states is significant. In realistic GNRs with dis-
order this would result in a strong enhancement of back-
scattering, which, in turn, can lead to a further distortion of
the conductance �in addition to bumps that are present even
in ideal GNRs without disorder�.

It is noteworthy that the features of the band structure and
character of propagating states in GNRs discussed above are
not caused by the Dirac-type energy dispersion but rather by
the hard-wall confinement at the boundaries. These features
of the GNRs resemble corresponding features of cleaved-
edge overgrown �CEO� quantum wires25 that also have a
hard-wall confinement. We therefore expect that magneto-
conductance of CEO also should exhibit suppressed quanti-
zation of high field. However, we were unable to find any
reports on magnetoconductance measurements in CEO wires
at high magnetic field.

We continue by relating our results to the available ex-
perimental data. We are not aware of any studies reporting a
drastic improvement of the conductance quantization in
GNRs by perpendicular magnetic field. The observed con-
ductance in narrow GNRs exhibit irregular14,15 or bumplike
features13 and the wider structures show pronounced bumps
superimposed on conductance plateaus.16,17 Even though this
is consistent with our findings, this can hardly be regarded as
a definite experimental validation of our predictions. We thus
hope that our work will motivate systematic studies of the
magnetoconductance that will shed new light on properties
of interacting electrons in confined graphene systems.

In conclusion, we have shown that applying a perpendicu-
lar magnetic field to a GNR containing an interaction elec-
tron gas leads to a suppression instead of expected improve-
ment of conductance quantization. This surprising behavior
is related to the modification of the band structure of the
GNR due to the electron interaction leading, in particular, to
the formation of compressible strips in the middle of the
ribbon and existence of counterpropagating states in the
same half of the GNR.
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